Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.224
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(3): 258-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432907

RESUMO

Glycated albumin (GA) is one of the proteins that replaces several sugar moieties and can be used as an indicator of diabetes mellitus. We developed a sensing system that uses GA in the early detection of diabetes mellitus. In this study, H6Y4C acetylated (Ac-) at the N-terminals of the peptide was combined with wheat germ agglutinin (WGA) to recognize glucose moieties. The Ac-H6Y4C-WGA was constructed as a GA-sensing probe. The tyrosine residues of Y4C exhibited an oxidation peak, and His-tag moieties were introduced to separate Ac-H6Y4C-WGA in the synthesis of the probe. The Ac-H6Y4C-WGA probe binds with the 1-2 molecules of Ac-H6Y4C per WGA using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-MS. Next, the functions of Ac-H6Y4C-WGA were evaluated using voltammetry. The number of electron-transfers was calculated based on the relationship between the peak potential and logarithm of scan rate and was 3.03. In the electrochemical measurements with mannose and bovine serum albumin, the peak currents were similar to that of GA alone. By contrast, a decrease in the peak current was suppressed when glucose was added to the solution containing the probe. As a result, Ac-H6Y4C-WGA was selectively bound to the glucose moieties of GA. The calibration curve via differential pulse voltammetry was proportional to the concentrations of GA and ranged from 1.0 × 10-12 to 2.0 × 10-11 M with a detection limit of 3.3 × 10-13 M.


Assuntos
Diabetes Mellitus , Albumina Sérica , Humanos , Diabetes Mellitus/diagnóstico , Elétrons , Glucose , Peptídeos , Albumina Sérica/química , Técnicas Biossensoriais/métodos
2.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38553427

RESUMO

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Tiossemicarbazonas , Humanos , Albumina Sérica Humana/química , Cobre/química , Albumina Sérica/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Indometacina/uso terapêutico , Microambiente Tumoral , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico
3.
Int J Biol Macromol ; 264(Pt 1): 130478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428781

RESUMO

In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Antioxidantes/farmacologia , Albumina Sérica/química , Arginina/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38460447

RESUMO

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Assuntos
Diabetes Mellitus , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Hipoglicemiantes/química , Reação de Maillard , Rosiglitazona , Pioglitazona , Ligação Proteica , Albumina Sérica/química , Tamoxifeno , Digitoxina , Cromatografia de Afinidade/métodos , Sítios de Ligação
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473998

RESUMO

Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C​2C​1Im][C​4F​9SO​3] and [N​1112(OH)][C​4F​9SO​3]) vs. mere fluoro-containing IL ([C​4C​1Im][CF​3SO​3]), in combination with sucrose or [N​1112(OH)][H​2PO​4] (well-known globular protein stabilizers), or high-charge-density salt K​3PO​4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.


Assuntos
Líquidos Iônicos , Albumina Sérica , Humanos , Albumina Sérica/química , Líquidos Iônicos/química , Interferon-alfa/farmacologia , Água/química , Proteínas Recombinantes
6.
Langmuir ; 40(10): 5228-5244, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38413419

RESUMO

The progressive escalation in the applications of bile salts in diverse fields has triggered research on their interaction with various biological macromolecules, especially with proteins. A proper understanding of the interaction process of bile salts, particularly in the lower concentrations range, with the serum albumin seems important since the normal serum concentration of bile salts is approximately in the micromolar range. The current study deals with a comprehensive and comparative analysis of the interaction of submicellar concentrations of sodium deoxycholate (NaDC) with two homologous transport proteins: bovine serum albumin (BSA) and human serum albumin (HSA). HSA and BSA with one and two tryptophans, respectively, provide the opportunity for an interesting comparison of tryptophan fluorescence behavior on interaction with NaDC. The study suggests a sequential interaction of NaDC in three discrete stages with the two proteins. A detailed study using warfarin and ibuprofen as site markers provides information about the sites of interaction, which is further confirmed by inclusive molecular dynamics simulation analysis. Moreover, the comparison of the thermodynamics and stability of the NaDC-serum albumin complexes confirms the stronger interaction of NaDC with BSA as compared to that with HSA. The differential interaction between the bile salt and the two serum albumins is further established from the difference in the extent of decrease in the esterase-like activity assay of the proteins in the presence of NaDC. Therefore, the present study provides important insight into the effect of submicellar concentrations of NaDC on the structure, stability, and activity of the two homologous serum albumins and thus can contribute not only to the general understanding of the complex nature of serum albumin-bile salt interactions but also to the design of more effective pharmaceutical formulations in the field of drug delivery and biomedical research.


Assuntos
Ácido Desoxicólico , Albumina Sérica Humana , Triptofano , Humanos , Ácido Desoxicólico/química , Ligação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica
7.
Anal Chem ; 96(8): 3498-3507, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363806

RESUMO

The development of small-molecular fluorogenic tools for the chemo-selective labeling of proteins in live cells is important for the evaluation of intracellular redox homeostasis. Dynamic imaging of human serum albumin (HSA), an antioxidant protein under oxidative stress with concomitant release of antioxidant drugs to maintain redox homeostasis, affords potential opportunities for disease diagnosis and treatment. In this work, we developed a nonfluorogenic prodrug named TPA-NAC, by introducing N-acetyl-l-cysteine (NAC) into a conjugated acceptor skeleton. Through combined thiol and amino addition, coupling with HSA results in fluorescence turn-on and drug release. It was reasoned that the restricted intramolecular motion of the probe under an HSA microenvironment after covalent bonding inhibited the nonradiative transitions. Furthermore, the biocompatibility and photochemical properties of TPA-NAC enabled it to image exogenous and endogenous HSA in living cells in a wash-free manner. Additionally, the released drug evoked upregulation of superoxide dismutase (SOD), which synergistically eliminated reactive oxygen species in a drug-induced liver injury model. This study provides insights into the design of new theranostic fluorescent prodrugs for chemo-selective protein labeling and disease treatments.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Pró-Fármacos , Humanos , Antioxidantes/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Medicina de Precisão , Albumina Sérica/química , Acetilcisteína , Albumina Sérica Humana
8.
Phys Chem Chem Phys ; 26(7): 6436-6447, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317610

RESUMO

Human serum albumin (HSA) is the most prominent protein in blood plasma, responsible for the maintenance of blood viscosity and transport of endogenous and exogenous molecules. Fatty acids (FA) are the most common ligands of HSA and their binding can modify the protein's structure. The protein can assume two well-defined conformations, referred to as 'Neutral' and 'Basic'. The Neutral (N) state occurs at pH close to 7.0 and in the absence of bound FA. The Basic (B) state occurs at pH higher than 8.0 or when the protein is bound to long-chain FA. HSA's allosteric behaviour is dependent on the number on FA bound to the structure. However, the mechanism of this allosteric regulation is not clear. To understand how albumin changes its conformation, we compared a series of HSA structures deposited in the protein data bank to identify the minimum amount of FA bound to albumin, which is enough to drive the allosteric transition. Thereafter, non-biased molecular dynamics (MD) simulations were used to track protein's dynamics. Surprisingly, running an ensemble of relatively short MD simulations, we observed rapid transition from the B to the N state. These simulations revealed differences in the mobilities of the protein's subdomains, with one domain unable to fully complete its transition. To track the transition dynamics in full, we used these results to choose good geometrical collective variables for running metadynamics simulations. The metadynamics calculations showed that there was a low energy barrier for the transition from the B to the N state, while a higher energy barrier was observed for the N to the B transition. These calculations also offered valuable insights into the transition process.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Ácidos Graxos/química , Termodinâmica , Sítios de Ligação
9.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338399

RESUMO

The interaction between human serum albumin (HSA) and hispidin, a polyketide abundantly present in both edible and therapeutic mushrooms, was explored through multispectral methods, hydrophobic probe assays, location competition trials, and molecular docking simulations. The results of fluorescence quenching analysis showed that hispidin quenched the fluorescence of HSA by binding to it via a static mechanism. The binding of hispidin and HSA was validated further by synchronous fluorescence, three-dimensional fluorescence, and UV/vis spectroscopy analysis. The apparent binding constant (Ka) at different temperatures, the binding site number (n), the quenching constants (Ksv), the dimolecular quenching rate constants (Kq), and the thermodynamic parameters (∆G, ∆H, and ∆S) were calculated. Among these parameters, ∆H and ∆S were determined to be 98.75 kJ/mol and 426.29 J/(mol·K), respectively, both exhibiting positive values. This observation suggested a predominant contribution of hydrophobic forces in the interaction between hispidin and HSA. By employing detergents (SDS and urea) and hydrophobic probes (ANS), it became feasible to quantify alterations in Ka and surface hydrophobicity, respectively. These measurements confirmed the pivotal role of hydrophobic forces in steering the interaction between hispidin and HSA. Site competition experiments showed that there was an interaction between hispidin and HSA molecules at site I, which situates the IIA domains of HSA, which was further confirmed by the molecular docking simulation.


Assuntos
Pironas , Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Albumina Sérica/química , Dicroísmo Circular , Espectrometria de Fluorescência , Sítios de Ligação , Termodinâmica , Ligação Proteica
10.
Phys Chem Chem Phys ; 26(10): 8528-8538, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411624

RESUMO

Oxidative stress, generated by reactive oxygen species (ROS), is responsible for the loss of structure and functionality of proteins and is associated with several aging-related diseases. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of human serum albumin (HSA), a plasma protein, through metal-catalyzed oxidation (MCO) at physiological temperature through various biophysical techniques like UV-vis absorption, circular dichroism (CD), differential scanning calorimetry (DSC), MALDI-TOF, FTIR, and Raman spectroscopy. The UV-vis spectra of oxidized HSA show an early blueshift, signifying the unfolding of the protein because of ROS followed by the broadening of the absorption peak at a longer time. The DSC data corroborate the observation, revealing an exothermic transition for the oxidized sample at a longer time, suggesting in situ aggregation. The CD and FTIR spectra indicate the associated secondary structural changes occurring with time, depicting the variation of the helical content of HSA. The amide-III analysis of Raman data also complements the structural changes, and MALDI-TOF data show the mass distribution with time. Overall, this work might help determine the effect of oxidation on the biological activity of serum albumin as it can impact the physiological properties of HSA.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Espécies Reativas de Oxigênio , Albumina Sérica/química , Albumina Sérica/metabolismo , Dicroísmo Circular , Estresse Oxidativo , Ligação Proteica , Espectrometria de Fluorescência
11.
Arch Biochem Biophys ; 753: 109916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296016

RESUMO

During persistent hyperglycaemia, albumin, one of the major blood proteins, can undergo fast glycation. It can be expected that timely inhibition of protein glycation might be add quality years to diabetic patients' life. Therefore, this study was designed to analyse the role of silibinin to reduced or delay amadori adduct formation at early glycation and its beneficial effect to improve the glycated albumin structure and conformation. We also analysed cytotoxic effect of amadori-albumin in the presence of silibinin on murine macrophage cell line RAW cells by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. Formation of early glycated product (furosine) in all samples was confirmed by LCMS. Albumin incubated with glucose only showed presence of furosine like structure. Albumin treated with silibinin in the presence of glucose did not show such furosine like peak. This LCMS result showed the silibinin play a protective role in the formation of early glycated product. HMF contents were also reduced in the presence of silibinin, when albumin was incubated with increasing concentrations of silibinin (100 and 200 µM) in the presence of glucose. ANS binding fluorescence decrease by increasing silibinin concentrations with amadori-albumin. SDS-PAGE was also showed that no significant difference in the band mobility of albumin treated with silibinin as compared to native albumin. The secondary conformational alteration in amadori-albumin due to silibinin were confirmed by FTIR. This spectrum showed slight shift in amide I and Amide II band in albumin co-incubated with glucose and silibinin as compared to albumin incubated with glucose only. We further discussed about cytotoxic effect of amadori albumin and its prevention by silibinin. MTT assay results demonstrated that amadori-albumin showed cytotoxic effect on RAW cells but silibinin showed protective role and increased the cell viability. Moreover, the results showed that silibinin has anti-glycating potential and playing a role to prevent the formation of Amadori-albumin in-vitro. Silibinin possesses strong anti-glycating capacity and can improve albumin structure and function at early stage. It might be useful in delaying the progression of diabetes mellitus and its secondary complications at early stage.


Assuntos
Antineoplásicos , Diabetes Mellitus , Animais , Camundongos , Amidas , Glucose , Glicosilação , Reação de Maillard , Albumina Sérica/química , Albumina Sérica/metabolismo , Silibina/farmacologia , Células RAW 264.7
12.
Transplant Cell Ther ; 30(4): 400.e1-400.e9, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253183

RESUMO

There are no clear criteria for selecting elderly patients with hematologic malignancies eligible for allogeneic hematopoietic stem cell transplantation (HSCT). This study aimed to evaluate inflammatory and nutritional status biomarkers as prognostic indicators of allogeneic HSCT in elderly patients. We compared the prognostic effects of 4 representative pretransplantation biomarkers: C-reactive protein-to-albumin ratio (CAR), Glasgow Prognostic Score (GPS), prognostic nutritional index (PNI), and albumin-to-globulin ratio (AGR). A total of 143 patients age ≥60 years who underwent their first allogeneic HSCT for a hematologic malignancy were enrolled between 2010 and 2020 in our single-center cohort. The median patient age was 65 years (range, 60 to 72 years). Pretransplantation high CAR, high GPS, and low PNI scores were associated with poor overall survival (OS), but the AGR was not associated with OS. Among the 4 biomarkers, CAR stratified OS most significantly (P < .001). Multivariate analyses identified only high CAR as an independent prognostic factor associated with OS (hazard ratio [HR], 1.98; P = .031) and showed that a Hematopoietic Cell Transplantation-Specific Comorbidity Index (HCT-CI) score ≥3 also was associated with OS (HR, 2.04; P = .012). High CAR was correlated with poor performance status, male sex, and high Disease Risk Index, but not with high HCT-CI score. When the patients were stratified into 3 groups according to a composite risk assessment using CAR and HCT-CI, the 3-year OS decreased significantly with increasing scores (82.8%, 50.3%, and 27.0%, respectively; P < .0001). In conclusion, CAR is the most useful prognostic indicator among the inflammatory and nutritional status biomarkers for allogeneic HSCT in elderly patients. Inflammatory and nutritional status in the elderly may be important prognostic factors for allogeneic HSCT independent of HCT-CI score.


Assuntos
Proteína C-Reativa , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Inflamação , Estado Nutricional , Idoso , Humanos , Biomarcadores , Proteína C-Reativa/análise , Proteína C-Reativa/química , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Prognóstico , Estudos Retrospectivos , Transplante Homólogo/efeitos adversos , Albumina Sérica/análise , Albumina Sérica/química , Inflamação/diagnóstico
13.
J Biomol Struct Dyn ; 42(2): 935-947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37098813

RESUMO

Hyperglycaemia accelerates the aging process significantly. Diabetes problems can be mitigated by inhibiting glycation. To learn more about glycation and antiglycation mediated by methyl glyoxal and baicalein, we studied human serum albumin as a model protein. A Methylglyoxal (MGO) incubation period of seven days at 37 degrees Celsius induced glycation of Human Serum Albumin.s Hyperchromicity, decreased tryptophan and intrinsic fluorescence, increased AGE-specific fluorescence, and reduced mobility were all seen in glycated human serum albumin (MGO-HSA) in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Fourier transform infrared spectroscopy (FT-IR) and then far ultraviolet dichroism were used to detect secondary and tertiary structural perturbations (CD). The Congo red assay (CR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) all verified the presence of amyloid-like clumps. Structure (carbonyl groups on ketoamine moieties) (CO), physiological problems including diabetes mellitus, and cardiovascular disease, etc. are linked to the structural and functional changes in glycated HSA, as proven by these studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Flavanonas , Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/química , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Magnésio , Albumina Sérica/química , Albumina Sérica Humana/química
14.
J Biomol Struct Dyn ; 42(4): 2127-2143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37098825

RESUMO

Alpelisib (ALP) is a potent anti-cancer drug showing promising activity against advanced breast cancers. Hence, profound understanding of its binding dynamics within the physiological system is vital. Herein, we have investigated interaction of ALP with human serum albumin (HSA) and bovine serum albumin (BSA) using spectroscopic techniques like absorption, fluorescence, time-resolved, synchronous and 3D-fluorescence, FRET, FT-IR, CD, and molecular docking studies. The intrinsic fluorescence of both BSA and HSA quenched significantly by ALP with an appreciable red shift in its emission maxima. Stern-Volmer analysis showed increase in Ksv with temperature indicating involvement of dynamic quenching process. This was further validated by no significant change in absorption spectrum of BSA and HSA (at 280 nm) upon ALP interaction, and by results of fluorescence time-resolved lifetime studies. ALP exhibited moderately strong binding affinity with BSA (of the order 106 M-1) and HSA (of the order 105 M-1), and the major forces accountable for stabilizing the interactions are hydrophobic forces. Competitive drug binding experiments and molecular docking suggested that ALP binds to site I in subdomain IIA of BSA and HSA. The Förster distance r was found to be less than 8 nm and 0.5 Ro < r < 1.5 Ro which suggests possible energy transfer between donors BSA/HSA and acceptor ALP. Synchronous and 3D-fluoresecnce, FT-IR and CD studies indicated that ALP induces conformational changes of BSA and HSA upon interaction.Communicated by Ramaswamy H. Sarma.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Tiazóis , Humanos , Albumina Sérica/química , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrometria de Fluorescência , Albumina Sérica Humana/química , Soroalbumina Bovina/química , Sítios de Ligação , Ligação Proteica , Termodinâmica , Dicroísmo Circular
15.
J Am Soc Mass Spectrom ; 35(1): 106-113, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38016044

RESUMO

Glycation is a spontaneous and nonenzymatic glycosylation. Glycated albumin (GA), which serves as an important biomarker in plasma in the diagnosis and characterization of diabetes, can be passively filtered from the plasma to tears. Tears are important targets for research in clinical diagnostics due to the ability to collect this biofluid noninvasively and repeatably. Therefore, the analysis of GA in tear film provides information for monitoring diabetes progression independent of blood pathologies. Due to the limited volume (1-5 µL) of natural tear film, we developed a small volume assay using a nano liquid chromatography-trapped ion mobility spectrometry-time-of-flight MS (nanoLC-timsTOF) platform for the analysis of glycated albumin in human plasma and tear films affected by diabetes. The peptides containing lysine 525, which is the main glycation site in GA, were relatively quantified and represented as the GA level. The results of the measurements showed that GA levels were significantly higher in diabetes-affected plasma and tears compared to controls with a p-value < 0.01. A strong correlation of glycated albumin levels was observed for the plasma and tear film in diabetes samples (Pearson coefficient 0.92 with a p-value 0.0012). Moreover, the number of GA glycation sites was significantly higher in diabetes-affected plasma and tear comparatively to controls. Among all the glycation sites in plasma albumin, the GA level quantified by lysine 136/137 had a strong correlation with more commonly used lysine 525, suggesting that lysine 136 /137 is an alternative diabetes biomarker in plasma. Overall, our findings demonstrate GA in tears as a biomarker for monitoring diabetes progression, highlighting new possibilities for quick and noninvasive diabetes detection and monitoring.


Assuntos
Diabetes Mellitus , Lisina , Humanos , Albumina Sérica Glicada , Produtos Finais de Glicação Avançada , Hemoglobinas Glicadas , Albumina Sérica/análise , Albumina Sérica/química , Biomarcadores , Glicemia/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-37574837

RESUMO

Four organic-polyoxometalate hybrids BR4[SiW12O40] (BR-SiW), BR3[PMo12O40] (BR-PMo), BR4K[EuSiW11O40]·2H2O (BR-EuSiW) and BR6Na3[EuW10O36] (BR-EuW) were fabricated by the polyoxometalates (POMs) anions and berberine cations (BR) noted for the alkaloids in traditional Chinese herbal medicine. These hybrids have been characterized and confirmed. The interaction between hybrids and human serum albumin (HSA) was investigated in a buffer solution (pH 7.4) using ultraviolet-visible light absorption and fluorescence techniques. The classical Stern-Volmer equation was used to analyze the fluorescence quenching at three temperatures (296, 303 and 310 K), and the static quenching mechanism for interaction was proposed. The Thermodynamic parameters, enthalpy, entropy change, and Gibbs free energy of hybrids interacting on HSA were calculated by Scatchard equation. The results indicated that therewas one binding site on the protein and BR-POMs all showed stronger binding force than that of raw materials. Synchronous fluorescence results showed that the binding sites of BR-POMs and HSA were not effectively affected the surrounding microenvironment. The following antibacterial experiments implied that inhibitory effect of hybrids were synergistic effect from organic active ingredient and POMs but the simple combination. All these data were prepared for further research on biology.


Assuntos
Berberina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/metabolismo , Berberina/farmacologia , Berberina/química , Albumina Sérica/química , Albumina Sérica/metabolismo , Espectrometria de Fluorescência/métodos , Ligação Proteica , Sítios de Ligação , Ânions , Termodinâmica , Antibacterianos/farmacologia
17.
Biometals ; 37(1): 101-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610601

RESUMO

The binding process between three species of chromium and serum albumin (SA) was investigated, as well as the interaction between K2Cr2O7 and bovine serum albumin (BSA) under coexistence of different chromium forms. CrCl3, K2Cr2O7 and Crpic bound to SA spontaneously through Van der Waals force, and their binding constants were 103-104 M-1 at 298 K, respectively. K2Cr2O7 and Crpic both had strong binding affinity for BSA, and significantly affected the secondary structure of BSA and the microenvironment surrounding amino acid residues. Chromium exhibited a greater fluorescence quenching constant towards HSA than toward BSA, and K2Cr2O7 induced greater conformational changes in human serum albumin (HSA) than in BSA. A weak binding of CrCl3 to BSA had no significant effect on the binding affinity of K2Cr2O7 to BSA. K2Cr2O7 and BSA have a greater binding affinity when coexisting with Crpic, and K2Cr2O7 induces a greater conformational change in BSA.


Assuntos
Cromo , Albumina Sérica , Humanos , Albumina Sérica/química , Espectrometria de Fluorescência , Termodinâmica , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Ligação Proteica , Sítios de Ligação , Simulação de Acoplamento Molecular
18.
Int J Biol Macromol ; 257(Pt 2): 128732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092116

RESUMO

The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica/química , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Heparina/farmacologia , Sítios de Ligação , Termodinâmica , Anticoagulantes/farmacologia , Ligação Proteica , Espectrometria de Fluorescência , Dicroísmo Circular
19.
Colloids Surf B Biointerfaces ; 234: 113673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086277

RESUMO

Emerging contaminants, such as antibiotics and nanoplastics, have garnered significant attention due to their potential adverse effects on diverse ecosystems. Antibiotic adsorption on the surface of nanoplastics potentially facilitates their long-range transport, leading to the synergistic effects of the complex. This research aims to examine the adsorption behavior of clarithromycin binding with polystyrene nanoplastics surface as well as their interaction between drug adsorbed polystyrene nanoplastics with serum albumin. Different spectroscopic methods were used to find out the interaction between clarithromycin and nanoplastics, under stimulated physiological conditions UV-vis spectroscopy showed a maximum of 22.8% percentage of the drug adsorbed with the polystyrene nanoplastics surface after 6 h of incubation. The fluorescence spectroscopic results demonstrated that the fluorescence intensity of serum albumin was quenched by the clarithromycin-polystyrene nanoplastics (CLA-PSNP) complex through static quenching. We calculated the number of binding stoichiometry, binding constants, and thermodynamic parameters. This study revealed that the CLA-PSNP binds to serum albumin spontaneously and its hydrophobic interactions played a significant role. The conformational changes in the structure of serum albumin were revealed from the findings of synchronous fluorescence spectra, CD spectra, and 3D fluorescence spectra, leading to the disturbance in functional activity. This study focuses valuable insights into the intermolecular interactions between clarithromycin-adsorbed polystyrene nanoplastics and serum albumin and its potential molecular-level biological toxicity.


Assuntos
Poliestirenos , Albumina Sérica , Albumina Sérica/química , Microplásticos , Claritromicina , Adsorção , Ecossistema , Espectrometria de Fluorescência , Termodinâmica , Ligação Proteica , Dicroísmo Circular , Sítios de Ligação
20.
Protein Sci ; 33(2): e4887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152025

RESUMO

The pharmacokinetic properties of small biotherapeutics can be enhanced via conjugation to cross-reactive albumin-binding ligands in a process that improves their safety and accelerates testing through multiple pre-clinical animal models. In this context, the small and stable heavy-chain-only nanobody NbAlb1, capable of binding both human and murine albumin, has recently been successfully applied to improve the stability and prolong the in vivo plasma residence time of multiple small therapeutic candidates. Despite its clinical efficacy, the mechanism of cross-reactivity of NbAlb1 between human and murine serum albumins has not yet been investigated. To unveil the molecular basis of such an interaction, we solved the crystal structure of human serum albumin (hSA) in complex with NbAlb1. The structure was obtained by harnessing the unique features of a megabody chimeric protein, comprising NbAlb1 grafted onto a modified version of the circularly permutated and bacterial-derived protein HopQ. This structure showed that NbAlb1 contacts a yet unexplored binding site located in the peripheral region of domain II that is conserved in both human and mouse serum albumin proteins. Furthermore, we show that the binding of NbAlb1 to both serum albumin proteins is retained even at acidic pH levels, thus explaining its extended in vivo half-life. The elucidation of the molecular basis of NbAlb1 cross-reactivity to human and murine albumins might guide the design of novel nanobodies with broader reactivity toward a larger panel of serum albumins, thus facilitating the pre-clinical and clinical phases in humans.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Camundongos , Animais , Albumina Sérica Humana/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Sítios de Ligação , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA